A Linear Poisson Autoregressive Model: The Poisson AR(p) Model
نویسندگان
چکیده
Time series of event counts are common in political science and other social science applications. Presently, there are few satisfactory methods for identifying the dynamics in such data and accounting for the dynamic processes in event counts regression. We address this issue by building on earlier work for persistent event counts in the Poisson exponentially weighted moving-average model (PEWMA) of Brandt et al. (American Journal of Political Science 44(4):823–843, 2000). We develop an alternative model for stationary mean reverting data, the Poisson autoregressive model of order p, or PAR(p) model. Issues of identification and model selection are also considered. We then evaluate the properties of this model and present both Monte Carlo evidence and applications to illustrate.
منابع مشابه
Integer Valued AR(1) with Geometric Innovations
The classical integer valued first-order autoregressive (INA- R(1)) model has been defined on the basis of Poisson innovations. This model has Poisson marginal distribution and is suitable for modeling equidispersed count data. In this paper, we introduce an modification of the INAR(1) model with geometric innovations (INARG(1)) for model- ing overdispersed count data. We discuss some structu...
متن کاملDrift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data
Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...
متن کاملBayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملPoisson-Lindley INAR(1) Processes: Some Estimation and Forecasting Methods
This paper focuses on different methods of estimation and forecasting in first-order integer-valued autoregressive processes with Poisson-Lindley (PLINAR(1)) marginal distribution. For this purpose, the parameters of the model are estimated using Whittle, maximum empirical likelihood and sieve bootstrap methods. Moreover, Bayesian and sieve bootstrap forecasting methods are proposed and predict...
متن کاملCharacterizations of Multivariate Normal-Poisson Model
‎Multivariate normal-Poisson model has been recently introduced as a special case of normal stable Tweedie models‎. ‎The model is composed of a univariate Poisson variable‎, ‎and the remaining variables given the Poisson one are independent Gaussian variables with variance the value of the Poisson component‎. ‎Two characterizations of this model are shown‎, ‎...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000